Inhaltspezifische Aktionen

Novel Materials for OLEDs

Novel Imidazo[1,5-a] Fused Heterocycles as Organic Light-Emitting Materials

In recent years, the imidazopyridine family has shown great potential across a wide range of research fields, from material science to pharmaceuticals[1].

Figure 1. Imidazo[1,5-a]pyridine, -quinoline and -isoquinoline.

We developed methods to synthesize a series of 1,3-disubstituted imidazo[1,5-a]pyridines and imidazo[1,5-a]quinolines (Figure 1) and analyzed their optical properties[2]. In collaboration with our partners, we successfully incorporated our novel imidazo[1,5-a]quinolines as the emitter molecule in an organic light-emitting diode (OLED) structure, showing its potential for OLED applications. Additionally, we prepared a series of cationic heteroleptic iridium(III) complexes based on imidazo[1,5-a]pyridines and imidazo[1,5-a]quinolines, some of which exhibit thermally activated delayed fluorescence (TADF)[3].

Recently, our focus has been on 1,3-disubstituted imidazo[1,5-a]quinolines and -isoquinolines (Figure 1), which are blue emitters. We aimed to improve their quantum yield by introducing electron-rich and electron-poor residual groups on the imidazole ring, with the goal of identifying the optimal blue emitter for OLED applications[4]. Additionally, for the first time, imidazo[1,5-a]quinolines scaffolds, including their metal chelates, were evaluated for activity against Mycobacterium tuberculosis (Mtb)[5].

 

Currently, we prepare structurally diverse imidazo[1,5-a] fused heterocycles and study their optical properties. In particular, we are focusing on linear imidazo[1,5-a]isoquinolines and bidirectional imidazo[1,5-a] fusion.

 

[1]   G. Volpi, E. Laurenti, R. Rabezzana, Molecules (Basel, Switzerland) 2024, 29.

[2]   a) J. M. Herr, C. Rössiger, G. Albrecht, H. Yanagi, R. Göttlich, Synthetic Communications 2019, 1; b) G. Albrecht, J. M. Herr, M. Steinbach, H. Yanagi, R. Göttlich, D. Schlettwein, Dyes and Pigments 2018, 158, 334.

[3]   a) J. M. Herr, C. Rössiger, H. Locke, M. Wilhelm, J. Becker, W. Heimbrodt, D. Schlettwein, R. Göttlich, Dyes and Pigments 2020, 180, 108512; b) G. Albrecht, C. Rössiger, J. M. Herr, H. Locke, H. Yanagi, R. Göttlich, D. Schlettwein, Phys. Status Solidi B 2020, 257, 1900677; c) G. Albrecht, C. Geis, J. M. Herr, J. Ruhl, R. Göttlich, D. Schlettwein, Organic Electronics 2019, 65, 321.

[4]   a) C. Rössiger, T. Oel, P. Schweitzer, O. Vasylets, M. Kirchner, A. Abdullahu, D. Schlettwein, R. Göttlich, Eur J Org Chem 2024, 27, e202400298; b) N. Kulhanek, K. V. Borysova, M. Kirchner, K. Müller‐Buschbaum, R. Göttlich, Eur J Org Chem 2024; c) N. Kulhanek, N. Martin, R. Göttlich, Eur J Org Chem 2024, 27.

[5]   M. Marner, N. Kulhanek, J. Eichberg, K. Hardes, M. D. Molin, J. Rybniker, M. Kirchner, T. F. Schäberle, R. Göttlich, RSC Med. Chem. 2024, 15, 1746.

 

Project-Director: Prof. Dr. Richard Göttlich
Co-Worker: M. Sc. Carina Rössiger
  Dr. rer. nat. Niclas Kulhanek
  M. Sc. Olesia Vasylets