Personal tools

Information zum Seitenaufbau und Sprungmarken fuer Screenreader-Benutzer: Ganz oben links auf jeder Seite befindet sich das Logo der JLU, verlinkt mit der Startseite. Neben dem Logo kann sich rechts daneben das Bannerbild anschließen. Rechts daneben kann sich ein weiteres Bild/Schriftzug befinden. Es folgt die Suche. Unterhalb dieser oberen Leiste schliesst sich die Hauptnavigation an. Unterhalb der Hauptnavigation befindet sich der Inhaltsbereich. Die Feinnavigation findet sich - sofern vorhanden - in der linken Spalte. In der rechten Spalte finden Sie ueblicherweise Kontaktdaten. Als Abschluss der Seite findet sich die Brotkrumennavigation und im Fussbereich Links zu Barrierefreiheit, Impressum, Hilfe und das Login fuer Redakteure. Barrierefreiheit JLU - Logo, Link zur Startseite der JLU-Gießen Direkt zur Navigation vertikale linke Navigationsleiste vor Sie sind hier Direkt zum Inhalt vor rechter Kolumne mit zusaetzlichen Informationen vor Suche vor Fußbereich mit Impressum

Document Actions

Research group Prof. Dr. Jürgen Janek

Physical chemistry of solids – solid state ionics and electrochemistry
Current notice

Are you interested in joining our group? You can find current vacancies in the job market of JLU Giessen (FB 08, Biologie und Chemie, Physikalisch-Chemisches Institut). You are also welcome to receive further information by e-mail.

Welcome to our homepage!
AG Janek 2018

 

Die AG Janek erforscht physikalisch-chemische Grundlagen von Festkörperprozessen, die für moderne Energie- und Grenzflächentechnologien wichtig sind.

Recent Publications

Understanding the Transport of Atmospheric Gases in Liquid Electrolytes for Lithium–Air Batteries
R. Haas, M. Murat, M. Weiss, J. Janek, A. Natan, and D. Schröder, J. Electrochem. Soc. 168 (2021); find paper here

 

Influence of Crystallinity of Lithium Thiophosphate Solid Electrolytes on the Performance of Solid‐State Batteries
S. Wang, W. Zhang, X. Chen, D. Das, R. Ruess, A Gautam, F. Walther, S. Ohno, R. Koerver, Q. Zhang, W. G. Zeier, F. H. Richter, C.-W. Nan, and J. Janek, Adv. Energy Mater. (2021) 2100654; find paper here

 

Polycrystalline and Single Crystalline NCM Cathode Materials—Quantifying Particle Cracking, Active Surface Area, and Lithium Diffusion
E. Trevisanello, R. Ruess, G. COnforto, F. H. Richter, and J. Janek, Adv. Energy Mater. 11 (2021) 2003400; find paper here

 

Linking Solid Electrolyte Degradation to Charge Carrier Transport in the Thiophosphate‐Based Composite Cathode toward Solid‐State Lithium‐Sulfur Batteries
S. Ohno, C. Rosenbach, G. F. Dewald, J. Janek, and W. G. Zeier, Adv. Funct. Mater. 31 (2021) 2010620; find paper here

 

Quantifying the Impact of Charge Transport Bottlenecks in Composite Cathodes of All-Solid-State Batteries
P. Minnmann, L. Quillmann, S. Burkhardt, F. H. Richter, and J. Janek, J. Electrochem. Soc. 168 (2021) 040537; find paper here

 

Facile Dry Coating Method of High-Nickel Cathode Material by Nanostructured Fumed Alumina (Al2O3) Improving the Performance of Lithium-Ion Batteries
M. J. Herzog, N. Gauquelin, D. Esken, J. Verbeeck, and J. Janek, Energy Technol. 9 (2021) 2100028; find paper here

Picture of the month - March 2021

Here you can find alternating insights into our research group. Enlarged versions of all published pictures can be found here.

Solid-state batteries have been researched and characterized with greater intensity in recent years due to their better properties compared to lithium-ion batteries, such as higher safety or broader operating temperature and comparable ionic conductivities. To compensate for the higher density of solid electrolytes, using lithium metal as anode material is necessary to obtain good gravimetric and volumetric energy densities. However, lithium metal is very reactive. If electronically conductive products are formed during the reaction of the solid electrolyte with lithium, this electrolyte cannot be in direct contact with lithium, otherwise short circuits may occur. 	In order to investigate the reaction products of the halide solid electrolyte Li3InCl6 with lithium, lithium is applied to the electrolyte by sputter deposition. In situ X-ray photoelectron spectroscopy (XPS) is used to investigate the resulting decomposition products. It was found that Li3InCl6 decomposes into In2O3 and indium metal, among others. Since indium metal is electronically conductive, the electrolyte will decompose until either Li3InCl6 or the lithium is depleted, thus the electrolyte cannot be used in direct contact with lithium. (Picture submitted by Luise Riegger)

Solid-state batteries have been researched and characterized with greater intensity in recent years due to their better properties compared to lithium-ion batteries, such as higher safety or broader operating temperature and comparable ionic conductivities. To compensate for the higher density of solid electrolytes, using lithium metal as anode material is necessary to obtain good gravimetric and volumetric energy densities. However, lithium metal is very reactive. If electronically conductive products are formed during the reaction of the solid electrolyte with lithium, this electrolyte cannot be in direct contact with lithium, otherwise short circuits may occur.      

In order to investigate the reaction products of the halide solid electrolyte Li3InCl6 with lithium, lithium is applied to the electrolyte by sputter deposition. In situ X-ray photoelectron spectroscopy (XPS) is used to investigate the resulting decomposition products. It was found that Li3InCl6 decomposes into In2O3 and indium metal, among others. Since indium metal is electronically conductive, the electrolyte will decompose until either Li3InCl6 or the lithium is depleted, thus the electrolyte cannot be used in direct contact with lithium. (Picture submitted by Luise Riegger)

The WG Janek is involved in the following networks
Logo BASF BASF-Forschungsnetzwerk "Elektrochemie und Batterien"

FestBatt

BMBF-Kompetenzcluster für Festkörperbatterien "FestBatt"


Project ProLiFest (Refining and processing of lithium foils and electrodes for solid-state batteries)

BMBF Logo


BMBF-Projekt ALISS

"Aluminium-Ionen-Batterie für stationäre Speichersysteme"

 

BMBF Logo


BMBF-Projekt ELONGATE

"Liquid Electrolytes for Next-Generation Battery Systems: Study and Implications of Reactive Species Solubility and Diffusivity"

BMBF Logo

BMBF-Projekt FLiPS

"Feststoffbatterien mit Lithiummetall und Polymeren Schutzschichten"

BMBF Logo

BMBF-Projekt MaLiBa

"Maßgeschneiderte Lithium-Metall-Anoden für zukünftige Batteriesysteme"

BMBF Logo

BMBF-Projekt MaLiBa

"Maßgeschneiderte Lithium-Metall-Anoden für zukünftige Batteriesysteme"

BMBF-Projekt MeLuBatt

BMBF-Projekt MeLuBatt

 "Frischer Wind für Metall/Luftsauerstoff-Batterien:

Was man von Lithium-Ionen-Batterien lernen kann"

NASEBER

 BMBF-Projekt NASEBER

"Natriumbasierte feste Sulfid- und Oxid-Elektrolyt-Batterien"

BMBF Logo

BMBF - Deutsch-Japanisches Programm


Projekt "Osaban" (Operando surface analytics for batteries with
3D-structured metal anodes)

 

Projekt "InCa" (Interfaces in Composite All-solid-state Cathodes: Advanced Characterization and Optimization; 3D analysis of structured composite cathodes)

BMBF Logo

BMBF - Deutsch-Taiwanesisches Programm

Projekt "AdamBatt"

BMBF Logo

BMBF - Deutschland-USA (DE-US)

Projekte "LiSi" und "CatSE"

DFG-logo

DFG-Exzellenzinitiative - Cluster "POLIS"

German Israeli Battery School

German Israeli Battery School

 

Kooperationsprojekt mit Volkswagen AG "Modellierung von Feststoffbatterien"