Personal tools

Information zum Seitenaufbau und Sprungmarken fuer Screenreader-Benutzer: Ganz oben links auf jeder Seite befindet sich das Logo der JLU, verlinkt mit der Startseite. Neben dem Logo kann sich rechts daneben das Bannerbild anschließen. Rechts daneben kann sich ein weiteres Bild/Schriftzug befinden. Es folgt die Suche. Unterhalb dieser oberen Leiste schliesst sich die Hauptnavigation an. Unterhalb der Hauptnavigation befindet sich der Inhaltsbereich. Die Feinnavigation findet sich - sofern vorhanden - in der linken Spalte. In der rechten Spalte finden Sie ueblicherweise Kontaktdaten. Als Abschluss der Seite findet sich die Brotkrumennavigation und im Fussbereich Links zu Barrierefreiheit, Impressum, Hilfe und das Login fuer Redakteure. Barrierefreiheit JLU - Logo, Link zur Startseite der JLU-Gießen Direkt zur Navigation vertikale linke Navigationsleiste vor Sie sind hier Direkt zum Inhalt vor rechter Kolumne mit zusaetzlichen Informationen vor Suche vor Fußbereich mit Impressum

Document Actions

Research group Prof. Dr. Jürgen Janek

Physical chemistry of solids – solid state ionics and electrochemistry
Current notice

Are you interested in joining our group? You can find current vacancies in the job market of JLU Giessen (FB 08, Biologie und Chemie, Physikalisch-Chemisches Institut). You are also welcome to receive further information by e-mail.

Welcome to our homepage!
AG Janek 2018

 

Die AG Janek erforscht physikalisch-chemische Grundlagen von Festkörperprozessen, die für moderne Energie- und Grenzflächentechnologien wichtig sind.

Recent Publications

On the Additive Microstructure in Composite Cathodes and Alumina-Coated Carbon Microwires for Improved All-Solid-State Batteries
S. Randau, F. Walther, A. Neumann, Y. Schneider, R. S. Negi, B. Mogwitz, J. Sann, K. Becker-Steinberger, T. Danner, S. Hein, A. Latz, F. H. Richter, and Jürgen Janek, Chem. Mater. 33 (2021) 1380; find paper here

 

Impedance Analysis of NCM Cathode Materials: Electronic and Ionic Partial Conductivities and the Influence of Microstructure
J. Zahnow, T. Bernges, A. Wagner, N. Bohn, J. R. Binder, W. G. Zeier, M. T. Elm, and J. Janek, ACS Appl. Energy Mater. 4 (2021) 1335; find paper here

 

In-Depth Characterization of Lithium-Metal Surfaces with XPS and ToF-SIMS: Toward Better Understanding of the Passivation Layer
S.-K. Otto, Y. Moryson, T. Krauskopf, K. Peppler, J. Sann, J. Janek, and A. Henss, Chem. Mater 33 (2021) 859; find paper here

 

Linking Solid Electrolyte Degradation to Charge Carrier Transport in the Thiophosphate‐Based Composite Cathode toward Solid‐State Lithium‐Sulfur Batteries
S. Ohno, C. Rosenbach, G. F. Dewald, J. Janek, and W. G. Zeier, Adv. Funct. Mater (2021) 2010620; find paper here

 

Analysis of Charge Carrier Transport Toward Optimized Cathode Composites for All‐Solid‐State Li−S Batteries
G. F. Dewald, S. Ohno, J. G. C. Hering, J. Janek, and W. G. Zeier, Batteries Supercaps 3 (2020); find paper here

 

Lithium‐Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solid‐State Batteries
L. Riegger, R. Schlem, J. Sann, W. G. Zeier, and J. Janek, Angew. Chem. Int. Ed. 60 (2021) 6718; find paper here

 

Picture of the month - August 2019

Here you can find alternating insights into our research group. Enlarged versions of all published pictures can be found here.

In-Depth Characterization of Lithium Metal SurfacesThe use of lithium metal as anode is an intensively explored option to significantly increase the energy density of batteries. As lithium is highly reactive, its surface is natively covered with a passivation layer that affects the cell performance. However, the passivation layer is mostly not considered and characterized. Therefore, we systematically characterized various lithium samples with X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and complementary energy-dispersive X-ray spectroscopy (EDX), to give a complete three-dimensional chemical picture of the surface passivation layer. Besides, we explored the factors influencing the passivation layer and the experimental design which is needed to reliably characterize a highly reactive analyte like lithium. (Picture submitted by Svenja Otto.)

In-Depth Characterization of Lithium Metal Surfaces

The use of lithium metal as anode is an intensively explored option to significantly increase the energy density of batteries. As lithium is highly reactive, its surface is natively covered with a passivation layer that affects the cell performance. However, the passivation layer is mostly not considered and characterized. Therefore, we systematically characterized various lithium samples with X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and complementary energy-dispersive X-ray spectroscopy (EDX), to give a complete three-dimensional chemical picture of the surface passivation layer. Besides, we explored the factors influencing the passivation layer and the experimental design which is needed to reliably characterize a highly reactive analyte like lithium. (Picture submitted by Svenja Otto).

The WG Janek is involved in the following networks
Logo BASF BASF-Forschungsnetzwerk "Elektrochemie und Batterien"

FestBatt

BMBF-Kompetenzcluster für Festkörperbatterien "FestBatt"


Project ProLiFest (Refining and processing of lithium foils and electrodes for solid-state batteries)

BMBF Logo


BMBF-Projekt ALISS

"Aluminium-Ionen-Batterie für stationäre Speichersysteme"

 

BMBF Logo


BMBF-Projekt ELONGATE

"Liquid Electrolytes for Next-Generation Battery Systems: Study and Implications of Reactive Species Solubility and Diffusivity"

BMBF Logo

BMBF-Projekt FLiPS

"Feststoffbatterien mit Lithiummetall und Polymeren Schutzschichten"

BMBF Logo

BMBF-Projekt MaLiBa

"Maßgeschneiderte Lithium-Metall-Anoden für zukünftige Batteriesysteme"

BMBF Logo

BMBF-Projekt MaLiBa

"Maßgeschneiderte Lithium-Metall-Anoden für zukünftige Batteriesysteme"

BMBF-Projekt MeLuBatt

BMBF-Projekt MeLuBatt

 "Frischer Wind für Metall/Luftsauerstoff-Batterien:

Was man von Lithium-Ionen-Batterien lernen kann"

NASEBER

 BMBF-Projekt NASEBER

"Natriumbasierte feste Sulfid- und Oxid-Elektrolyt-Batterien"

BMBF Logo

BMBF - Deutsch-Japanisches Programm


Projekt "Osaban" (Operando surface analytics for batteries with
3D-structured metal anodes)

 

Projekt "InCa" (Interfaces in Composite All-solid-state Cathodes: Advanced Characterization and Optimization; 3D analysis of structured composite cathodes)

BMBF Logo

BMBF - Deutsch-Taiwanesisches Programm

Projekt "AdamBatt"

BMBF Logo

BMBF - Deutschland-USA (DE-US)

Projekte "LiSi" und "CatSE"

DFG-logo

DFG-Exzellenzinitiative - Cluster "POLIS"

German Israeli Battery School

German Israeli Battery School

 

Kooperationsprojekt mit Volkswagen AG "Modellierung von Feststoffbatterien"