Benutzerspezifische Werkzeuge

Information zum Seitenaufbau und Sprungmarken fuer Screenreader-Benutzer: Ganz oben links auf jeder Seite befindet sich das Logo der JLU, verlinkt mit der Startseite. Neben dem Logo kann sich rechts daneben das Bannerbild anschließen. Rechts daneben kann sich ein weiteres Bild/Schriftzug befinden. Es folgt die Suche. Unterhalb dieser oberen Leiste schliesst sich die Hauptnavigation an. Unterhalb der Hauptnavigation befindet sich der Inhaltsbereich. Die Feinnavigation findet sich - sofern vorhanden - in der linken Spalte. In der rechten Spalte finden Sie ueblicherweise Kontaktdaten. Als Abschluss der Seite findet sich die Brotkrumennavigation und im Fussbereich Links zu Barrierefreiheit, Impressum, Hilfe und das Login fuer Redakteure. Barrierefreiheit JLU - Logo, Link zur Startseite der JLU-Gießen Direkt zur Navigation vertikale linke Navigationsleiste vor Sie sind hier Direkt zum Inhalt vor rechter Kolumne mit zusaetzlichen Informationen vor Suche vor Fußbereich mit Impressum

Artikelaktionen

Regulationsmechanismus des Notch-Onkogens aufgeklärt

Wissenschaftlerinnen und Wissenschaftler der Universitäten Gießen und Ulm knacken den Notch-Code – Wichtiger Signalweg entdeckt

Nr. 45 • 24. März 2015

Die Entwicklung eines Organismus aus einer befruchteten Eizelle wird – trotz der Komplexität dieses Vorgangs – durch eine überraschend kleine Zahl evolutionär hochkonservierter Signalkaskaden gesteuert. Eine solche Kaskade ist der Notch-Signalweg. Aufgrund dieser fundamentalen Bedeutung haben Mutationen im Notch-Gen schwerwiegende Folgen für den Organismus. So sind Notch-Mutationen, die den Abbau des Notch-Proteins stören, eine der häufigsten Ursachen bei der akuten lymphoblastischen Leukämie. Zahlreiche Inhibitoren, die diese Aktivität wieder normalisieren, befinden sich bereits in klinischen Testphasen zur Krebstherapie. Einen neuartigen Regulationsmechanismus der die Funktionalität des Notch-Proteins und somit auch seine Wirkung als Onkogen entscheidend beeinflusst, haben Forscherinnen und Forscher der Universität Ulm und der Justus-Liebig-Universität Gießen (JLU) nun in enger Zusammenarbeit entschlüsselt. Ihre Ergebnisse veröffentlichten sie in der Fachzeitschrift „Science Signaling“.

Bereits vor 100 Jahren hat der Genetiker Thomas Morgan Fruchtfliegen untersucht, die in ihren Flügeln auffällige Kerben (englisch: notches) aufwiesen. Später zeigte sich, dass diese Fruchtfliegen eine Mutation in einem speziellen Gen aufwiesen, das seitdem als Notch-Gen bezeichnet wird. Dieses Gen findet man in allen mehrzelligen Tieren von der Qualle über Insekten und Schnecken bis hin zum Menschen. Heute weiß man, dass das vom Notch-Gen abgelesene Protein entwicklungsspezifische Signale von der Zelloberfläche in den Zellkern transportiert. Dort reguliert es die Expression spezifischer Genprogramme, welche wiederum die Entwicklung bestimmter Zelltypen, Organe und Organsysteme steuern – beim Menschen beispielsweise die Zellen des Immunsystems.

Im Zentrum der Forschung zum Notch-Signalweg stand in den vergangenen Jahren die sogenannte epigenetische Kontrolle der Genexpression durch Notch. Diese Regulation setzt nicht am Genom selbst an, sondern an der Verpackung der DNA, die aus Chromatin besteht, einer komplexen Struktur aus Histonproteinen und der DNA. Wichtiger Bestandteil der Regulation ist die Modifikation der Proteine, zum Beispiel durch Übertragung oder Entfernung von Methylgruppen. Eine solche Methylierung kann die Funktion des Proteins verändern. Bestimmte Methyltransferasen, die Histonproteine modifizieren, können über diese sogenannten Chromatinmodifikationen direkt die Genexpression beeinflussen.

In einer engen Zusammenarbeit mit Prof. Dr. Franz Oswald sowie Kolleginnen und Kollegen an der Universität Ulm konnte die Forschergruppe um Prof. Borggrefe zeigen, dass das Notch-Protein selbst durch die Methyltransferase CARM1 methyliert wird. Die Methylierung wirkt sich auf Aktivität und Stabilität des Notch-Proteins aus: Genexpression und Entwicklungsprozesse innerhalb eines Organismus verändern sich dadurch maßgeblich, wie die Forscherinnen und Forscher belegen konnten.

Darauf aufbauend ist es den Wissenschaftlerinnen und Wissenschaftlern gelungen, ein mathematisches Modell zu entwickeln, das Stärke und Dauer eines Notch-Signals berechnet und mit dessen Hilfe man die Wirkung von Notch-Modifikationen am Computer simulieren und vorhersagen kann. Diese enge Zusammenarbeit von Wissenschaftlerinnen und Wissenschaftlern, die ihre Ergebnisse mit Hilfe von Experimenten erhalten und Forscherinnen und Forschern, die daraus Computermodelle generieren („Systembiologen“), wird immer wichtiger. Denn diese Kooperation ermöglicht es, Forschungsergebnisse in einen größeren  Zusammenhang zu stellen, um komplexe biologische Abläufe besser zu verstehen und so gezielt Interventionsstrategien und Medikamente entwickeln zu können.

  • Publikation

Hein, et al. (2015): Site-specific methylation of Notch1 controls amplitude and duration of the Notch1 response. Science Signaling, online veröffentlicht am 24. März 2015.
DOI: 10.1126/scisignal.2005892

  • Kontakt


Biochemisches Institut
Friedrichstraße 24, 35392 Gießen


Telefon: 0641 99-47400 


Pressestelle der Justus-Liebig-Universität Gießen, Telefon 0641 99-12041

abgelegt unter: